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On Basis Set Effects in SCF Calculations of the 
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Marek Bulski and Grzegorz Chatasifiski 

Quantum Chemistry Laboratory, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland 

The so-called "superposition error" is investigated for different Gaussian basis sets 
used in the SCF calculations of  the interaction energy between neon atoms. The 
results show that unless the counterpoise method [1 ] is applied, a qualitatively 
wrong description of  interaction can be obtained. This is observed even for the basis 
sets which give fairly accurate atomic energies. It is shown that, despite large super- 
position error, basis sets fitted to the exact density [2] can provide very reasonable 
results if the counterpoise method is applied. 
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1. Introduction 

There is much current interest in the ab initio calculations of  weak interactions between 
atomic and molecular systems. Though the interaction energy is in such cases very 
small, it is of great importance for the explanation of  thermodynamic properties of  
gases and liquids, cohesive energy and structure of  crystals, hydrogen-bond energy, etc. 

Recently it has been proved that the SCF interaction energy curve is a very good starting 
point for the inclusion of  correlation effects not only in a variational scheme [3-5] but 
also in a perturbational treatment [6, 7]. However, a serious problem with the SCF 
approach is the basis set superposition error [4]. The effect was first noted by Kestner [8] 
in a discussion of  early ab initio SCF calculations on He2 [9-11 ]. The problem may 
be overcome with the aid of  the function counterpoise method proposed by Boys and 
Bernardi [1]. In this paper we examine the effectiveness of  the Boys and Bernardi approach 
in the case of  two interacting neon atoms which may be considered as typical representa- 
tives of closed-shell atoms. 

2. Method 

The Hartree-Fock interaction energy is defined by the formula: 
H F  Eint (R) = E ~ ( R )  - (E~ ~ + E~ F) (1) 

HF H F  EHF are the exact Hartree-Fock energies o f the supersystem and its where EAB , E a , 
components respectively. However, these quantities are almost never known exactly, and 
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one is forced to deal with the approximate HartreeLFock functions. As soon as the 
energies in formula (1) are calculated in finite basis sets the definition is no longer 
unique. 

A common practice is to approximate the Hartree-Fock interaction energy by the 
formula: 

I _ S C E  Eint(R ) - EAB (R) - (ESCF(~176 + ESCF(~176 (2) 

where EASCF(R) is the total SCF energy of the interacting systems A and B at the 
distance R and ESCF(oo), ESCF(~ the SCF energies of the isolated systems A and 
B respectively. The symbol " ~ "  means that when calculating the energy EASC~) the 
system B is removed to infinity together with its own basis set. 

Another way of calculating E~t  r in a finite basis set has been prqposed by Boys and 
Bernardi [1]. The method consists of approximating E~t  v by the following formula: 

H SCF SCF SCF 
Eint(R ) (3) EAB (R) - (EA(B)(R) + = EB(A)(R)).  

In the above formula the energy of the supersystem as well as the energies of its 
constituents A and B are calculated with the basis of the whole sttpersystem AB. The 
symbol ES~BF)(R) means that the A energy is to be calculated when B is removed, but 
the basis set centred on B is still kept at the distance R. Consequently the calculated SCF 
energies of isolated systems depend (formally) on the intersystem Separation. In practice 
this implies that additional calculations of the SCF energy for the isolated systems A and 
B have to be performed for each intersystem distance. However, this does not increase 
computational time considerably, because for calculating the isolated system energies 
we need the same integral file as for the whole supersystem. Only the SCF procedure 
has to be repeated. 

When discussing the adequacy of the above approach it is important to point out an 
inconsistency which appears in formula (2). In computing ESCF(R) one reproduces 
the energies of the isolated systems A and B and the interaction energy between them. 
The reproduction of the energies A and B takes place in the full basis of the super- 
system AB, rather than in the bases of its components. According to formula (2) we 
subtract the energies of isolated systems A and B obtained with a poorer basis set, i.e. 
basis of constituent systems only. As a result, particular components in formula (2) 
are calculated at a different level of accuracy. Since Ei~t F is a few orders smaller than 
the quantities in formula (2), it is possible that the error caused by a poor basis set may 
be of the same order of magnitude as the interaction energy. 

When formula (3) is used, an extra destabilization correction appears, caused by the 
extension of the basis set for the isolated systems. The effect is known in the literature 
as a basis set superposition error [4]. It is always positive and will be further denoted 
as 

Ae(R ) = E[Int(R) - EInt(R ) (4) 

The magnitude of Ae may serve as a useful criterion of completeness of the basis set 
used. If one uses the counterpoise method, the/',e correction is included in the inter- 
action energy. 
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The above remarks cannot be considered as a rigorous theoretical justification of  the 
inadequacy of  formula (2). More conclusive are the results of  practical applications of  
both formulae. It was shown [12] that application of lormula  (2) can even lead to a 
quantitatively wrong description of  the interaction. 

However, in the literature one can find only a few examples of the application of  the 
counterpoise method on SCF level [12-17]. Recently Urban and Hobza [15] reported 
an interesting analysis of  the influence o f  the superposition error on the SCF inter- 
action energy and its components in the case of  two H 2 molecules. It is noteworthy 
that in all the above calculations, independently of  basis shortcomings, a considerable 
improvement has been achieved, with a trend to overcorrecting the SCF interaction 
energy. 

It is interesting to know how formulae (2) and (3) work in the case of  very weakly 
interacting systems, e.g. rare gas atoms. In this case the interaction energy is very small 
due to the lack of  permanent multipole moments. The HF- Ein t lS thus dominated by the 
first-order repulsion which decreases exponentially with R. Thus one can expect 
that the E/nt could be of  the magnitude of  the superposition error. The calculations 
have been performed for the system of  two neon atoms, since neon is the rare gas 
atom including p-type orbitals which do not saturate as rapidly as s-type orbitals. 

While investigating the SCF interaction energy between two closed-shell atoms the 
problem appears of  how to construct an effective Gaussian basis set for the calcula- 
tion of  interaction energy. The basis set for AB is commonly built as a sum 
of two basis sets for A and B plus, in some cases, a few polarization functions. The 
basis for the isolated atom is optimized to give the lowest atomic energy. Recently 
Ko~os and Leg [2] proposed another choice of  basis set for the isolated systems. The 
functions of Ko~os and Leg are optimized to give the best density 1. Their results for the 
first-order interaction energy have shown that the periphery of  wave function is also 
of great importance for correct reproduction of  the interaction energy [19-21]. Hence, 
it would be interesting to compare the usefulness of the basis sets "optimized on 
energy" and those "fitted to density" in the SCF calculations. 

3. Results and Discussion 

In this paper the "optimized on energy" basis sets of  Duijneveldt [22] and those "fitted to 
density" of  Leg [23] have been used. The basis sets and the atomic energies obtained 
using these basis sets are specified in Table 1. 

The values of  the SCF interaction energy obtained using formula (2) with all basis sets 
under consideration have been displayed in the first part o f  Table 2. For the uncon- 
tracted basis sets (A, B, C) a minimum on the energy curve has been obtained. For the 
remaining basis sets (D, E, F)  the interaction energies are not so unrealistic, but in the 
van der Waals minimum region there is still poor agreement with the accurate energies, 
even for the best bases used. 

The density was calculated with the Hartree-Fock limit wave function of Clementi [18], and the 
fit was done by the least squares method. 
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If  one performs calculations according to formula (3) (see the second part of  Table 2) 
then for bases A, B, C the minimum disappears and for bases D, E, F a quantitative 
disagreement is corrected and the values of  the SCF interaction energy, especially 
those for Leg' bases, agree quite well with the most accurate SCF results [24, 25].  
In Ref. [24] only one figure is reported near the van der Waals minimum region,but 
more recent results of Reinsch and Meyer [25] obtained with the basis set (1 ls/6p/2d/lf) 
contracted to [7s/Sp/2d/lf] are in very good agreement with ours. 

It is also important to notice that the Leg' functions yield a very reasonable inter- 
action energy, provided the counterpoise method is used. This implies that an atomic 
energy criterion is not the only criterion, and not a very sensitive one, o f  the usefulness 
of the basis set for investigation of  the interaction energy in the supermolecular approach. 

Presented results imply the following conclusions: 
1) When the SCF interaction energy is to be computed one should always use the 

counterpoise method. 
2) One should not limit oneself only to the bases optimized on energy. 
3) It should be strongly emphasized that even the counterpoise method cannot produce 

reliable results if a poor basis set is used (see basis (4/2)D in Table 2). 

In the above discussion we have limited ourselves to a supermolecular approach on the 
SCF level only. The same problem, however, appears in other supermolecular methods, 
such as CI or MCSCF. It was shown [26, 27] that a significant part of  the correlation 
energy might be a result of  superposition error. 

It is worthwhile to remark on the physically important problem of  the investigation of  
many-body effects. Three- and more-body effects are significantly smaller than two- 
body ones. Therefore greater accuracy of  the calculations and better functions are 
needed. In this case the system's energies have to be calculated with not only the 

Table 1. Comparison of the SCF energies for the Ne atom in various basis sets. The energy is 
expressed in Haxtrees 

% 
Basis E SCF(Ne) Deviation from HF Limit 

A (4/2) D - 126.81594 1.3467 
B (8/4)D --128.49770 0.0384 
C (4/3/4) L -118.43388 7.8674 
O (8/4)D -+ [4/2] --128.43097 0.0903 
E (12/6)D ~ [8/4] -128.54229 0.0037 
F (6/8/8) L -+ [ 8/4] --125.54135 2.3382 

(6/4)C STO -128.52708 
(HF limit) 

1. Subscript D denotes Duijneveldt's [22] bases, subscript L denotes Leg' [23] bases, subscript C 
denotes Clementi's [18] basis assumed as a HF limit. 

2. Parentheses axe used for uncontracted basis sets, square brackets are used foi contracted basis 
sets, 

3. In the case of Le~' bases ls and 2s orbitals were expanded on different sets of exponents [23]. 
The first two figures in the parentheses refer to s- and the last to p-function. 
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Table 2. Comparison of the SCF interaction energies calculated with various bases using formulae 
(2) and (3). The energy and internuclear distance R are expressed in Hartrees and Bohrs (ao) 
respectively 

R 
Basis 3.0 4.0 5.0 6.0 

Using formula (2) 
A 5.072 ( -2)  3.539 (-4)  -2.482 ( -5)  -1.0 ( -10)  
B 9.734 ( -2)  6.385 ( -3)  -4.520 ( -5)  -2.910 ( -5)  
C 8.324 ( -2 )  -1.742 ( -3)  -6.810 ( -3)  -4.371 ( -3 )  
D 9.570 ( -2)  6.632 ( -3)  2.621 ( -4)  6.002 ( -6 )  
E 1.000 ( -1)  8.526 (-3)  6.749 ( -4)  3.006 ( -5)  
F 9.869 ( -2)  7.985 (-3)  3.700 (-4)  -1.584 ( -4)  

Using formula (3) 
A 8.389 (-2)  1.862 ( -3)  4.242 (-6)  1.10 (-8)  
B 9.557 ( -2)  7.958 ( -3)  6.218 ( -4)  2.680 ( -5)  
C 1.055 ( -1)  1.006 ( -2)  6.501 ( -4)  5.853 ( -5)  
D 9.795 ( -2)  7.780 (-3)  5.167 ( -4)  1.843 ( -5 )  
E 1.001 ( -1 )  8.586 ( -3)  7.176 ( -4)  5.777 ( -5 )  
F 9.978 ( -2)  8.660 ( -3)  7.441 (-4) 6.374 ( -5)  

ASCF a 9.95 (-2)  8.5 ( -3)  7. ( -4)  
RM b - - 7.427 (-4)  6.34 (-5)  

a Results from Ref. [24]. 
b Results of Reinsch and Meyer [25] obtained with a basis set (11s/6p/2d/l f )  -+ [7s/5p/2d/lf] 

and also using the counterpoise technique. 

" d i m e r "  but  also the " t r i m e r "  basis set. The influence o f  this fact on the superposi t ion 

basis error should be investigated. Work in this direct ion is in progress in our  laboratory.  
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